Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.
نویسندگان
چکیده
The mammalian target of rapamycin complex 1 (mTORC1) is the key signaling hub that regulates cellular protein homeostasis, growth, and proliferation in health and disease. As a prerequisite for activation of mTORC1 by hormones and mitogens, there first has to be an available pool of intracellular amino acids. Arginine, an amino acid essential during mammalian embryogenesis and early development is one of the key activators of mTORC1. Herein, we demonstrate that arginine acts independently of its metabolism to allow maximal activation of mTORC1 by growth factors via a mechanism that does not involve regulation of mTORC1 localization to lysosomes. Instead, arginine specifically suppresses lysosomal localization of the TSC complex and interaction with its target small GTPase protein, Rheb. By interfering with TSC-Rheb complex, arginine relieves allosteric inhibition of Rheb by TSC. Arginine cooperates with growth factor signaling which further promotes dissociation of TSC2 from lysosomes and activation of mTORC1. Arginine is the main amino acid sensed by the mTORC1 pathway in several cell types including human embryonic stem cells (hESCs). Dependence on arginine is maintained once hESCs are differentiated to fibroblasts, neurons, and hepatocytes, highlighting the fundamental importance of arginine-sensing to mTORC1 signaling. Together, our data provide evidence that different growth promoting cues cooperate to a greater extent than previously recognized to achieve tight spatial and temporal regulation of mTORC1 signaling.
منابع مشابه
TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1
mTOR complex 1 (mTORC1) regulates cell growth and metabolism. mTORC1 activity is regulated via integration of positive growth-promoting stimuli and negative stress stimuli. One stress cells confront in physiological and pathophysiological contexts is hyperosmotic stress. The mechanism by which hyperosmotic stress regulates mTORC1 activity is not well understood. We show here that mild hyperosmo...
متن کاملBiochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.
Tuberous sclerosis complex (TSC) is a genetic disease caused by a mutation in either the tsc1 or tsc2 tumor suppressor gene. Recent studies have demonstrated that TSC2 displays GAP (GTPase-activating protein) activity specifically towards the small G protein Rheb and inhibits its ability to stimulate the mTOR signaling pathway. Rheb and TSC2 comprise a unique pair of GTPase and GAP, because Rhe...
متن کاملA complex interplay between Akt, TSC2 and the two mTOR complexes.
Akt/PKB (protein kinase B) both regulates and is regulated by the TSC (tuberous sclerosis complex) 1-TSC2 complex. Downstream of PI3K (phosphoinositide 3-kinase), Akt phosphorylates TSC2 directly on multiple sites. Although the molecular mechanism is not well understood, these phosphorylation events relieve the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1 [mTOR (mammalian targ...
متن کاملTSC2/Rheb signaling mediates ERK‐dependent regulation of mTORC1 activity in C2C12 myoblasts
The enhanced rate of protein synthesis in skeletal muscle cells results in a net increase in total protein content that leads to skeletal muscle growth/hypertrophy. The mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)-dependent regulation of the activity of mechanistic target of rapamycin (mTOR) and subsequent protein synthesis has been suggested as a re...
متن کاملp53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb.
UNLABELLED The activity of mammalian target of rapamycin complex 1 (mTORC1) is frequently enhanced in carcinomas, an effect thought to contribute to the malignant phenotype. Here, it is demonstrated that either deletion or mutation of TP53 in colon or lung carcinoma cells substantially enhances mTORC1 kinase activity by an effect downstream of and independent of AMPK. Mechanistically, it was de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- eLife
دوره 5 شماره
صفحات -
تاریخ انتشار 2016